Patterns in random binary search trees

نویسندگان

  • Philippe Flajolet
  • Xavier Gourdon
  • Conrado Martínez
چکیده

Ž . ABSTRACT: In a randomly grown binary search tree BST of size n, any fixed pattern occurs with a frequency that is on average proportional to n. Deviations from the average case are highly unlikely and well quantified by a Gaussian law. Trees with forbidden patterns occur with an exponentially small probability that is characterized in terms of Bessel functions. The results obtained extend to BSTs a type of property otherwise known for strings and combinatorial tree models. They apply to paged trees or to quicksort with halting on short subfiles. As a consequence, various pointer saving strategies for maintaining trees obeying the random BST model can be precisely quantified. The methods used are based on analytic models, especially bivariate generating function subjected to singularity perturbaŽ . tion asymptotics. Q 1997 John Wiley & Sons, Inc. Random Struct. Alg., 11, 223]244 1997

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Profile and Height of Random Binary Search Trees

The purpose of this article is to survey recent results on distributional properties of random binary search trees. In particular we consider the profile and the height.

متن کامل

P´olya Urn Models and Connections to Random Trees: A Review

This paper reviews P´olya urn models and their connection to random trees. Basic results are presented, together with proofs that underly the historical evolution of the accompanying thought process. Extensions and generalizations are given according to chronology: • P´olya-Eggenberger’s urn • Bernard Friedman’s urn • Generalized P´olya urns • Extended urn schemes • Invertible urn schemes ...

متن کامل

Probabilistic analysis of the asymmetric digital search trees

In this paper, by applying three functional operators the previous results on the (Poisson) variance of the external profile in digital search trees will be improved. We study the profile built over $n$ binary strings generated by a memoryless source with unequal probabilities of symbols and use a combinatorial approach for studying the Poissonized variance, since the probability distribution o...

متن کامل

Spanning Tree Size in Random Binary Search Trees

This paper deals with the size of the spanning tree of p randomly chosen nodes in a binary search tree. It is shown via generating functions methods, that for fixed p, the (normalized) spanning tree size converges in law to the Normal distribution. The special case p = 2 reproves the recent result (obtained by the contraction method by Mahmoud and Neininger [Ann. Appl. Probab. 13 (2003) 253–276...

متن کامل

Applications of Stein’s Method in the Analysis of Random Binary Search Trees

Under certain conditions, sums of functions of subtrees of a random binary search tree are asymptotically normal. We show how Stein’s method can be applied to study these random trees, and survey methods for obtaining limit laws for such functions of subtrees.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 11  شماره 

صفحات  -

تاریخ انتشار 1997